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The Stoner instability of the paramagnetic state, yielding to the occurence of ferromagnetism, is reviewed for electron 
density of states reflecting changes in the dimensionality of the system. The situations treated are one-dimensional (1D), 
two-dimensional (2D) and three-dimensional (3D) cases and also a special case where the density of states has a parabolic 
shape near the Fermi level, and is half-filled at equilibrium. We recover the basic results obtained in the original work of E.C. 
Stoner [Proc. Roy. Soc. London A 165, 372 (1938)]; also we demonstrate that in 1D and 2D case, whenever the Stoner 
criterion is satisfied, the system evolves spontaneously towards maximum polarization  allowed by Hund's rules. For the 
3D case, the situation is that: (i) when the Stoner criterion is satisfied, but the ratio between the Hubbard repulsion energy 

 and the Fermi energy  is between 4/3 and 3/2, the system evolves towards a ferromagnetic state with incomplete 
polarization (the polarization parameter  is between 0 and 1); (ii) when , the system evolves towards 
maximum polarization. This situation was also recognized in the original paper of Stoner, but with no further analysis of the 
obtained polarizations nor comparison with experimental results. We apply the result of calculation in order to predict the 
Hubbard interaction energy. Finally, for the case of half-filled parabolic density of states a result quite similar with the case 
of the free electron 3D DOS is obtained, but here the Hubbard energy has to be compared with the band half-widh , 
whereas the absolute value of the Fermi energy has no relevance in this model. The Stoner criterion is  and for 

 the total energy is minimized for incomplete polarization . We compare the results obtained from the present 
theoretical study with the newest available experimental data. 
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1. Introduction. The Stoner model  
  
The basics of the Stoner model regarding the band 

ferromagnetism consists in rigid displacement of energy 
bands corresponding to the  and  spins [1]. In this paper 
we review the general physics of the zero temperature 
Stoner model and apply it to several forms of the electron 
density of states (DOS), modeling systems of variable 
dimensionality. 

We further call the sub-band  as of majority charge 
carriers, and the sub-band  as of minority charge carriers. 
The densities of states are equal: 
 

                        (1) 
 
but  the occupancies of energy bands are not equal    (Fig. 
1): 

                       (2) 
 

This will be subsequently understood as the rigid 
band displacement model. An alternate model for band 
ferromagnetism is the Hirsch model [2-4], where the shape 
of the DOS changes for  and  electrons, whereas the 
bands are not mutually displaced. However, detailed 
calculations of spin-dependent DOS [5] tend to confirm 
rather the validity of the Stoner model than that of the 
Hirsch model of ferromagnetism, at least for 3d metals. 

 Let  be the fraction of electrons which pass from 
the sub-band  into sub-band  (Fig. 1a). 
Following Wohlfarth [3,6]: 
 

                (3a) 

 

                (3b) 

 
It is straightforward to see that  and  are 

functions of , then the bands are splitted by the value: 
 

                    (4) 
 

The conservation of electron number is written as: 
 

                (5) 
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Thus               

                                 (6) 

 
The intuitive reason of occurence of the band splitting 

and, furthermore, of ferromagnetic ordering is the intra-
site Coulomb repulsion [7,8]. The opposite spin electrons, 

 and , may occupy the same orbital onto the same site, 
but with the cost of an energy increase due to the Coulomb 
repulsion. Hirsch [2] also pointed out that the exchange 
inter-site integral acts eventually only on the direct energy 
term, in case of hybridation, and not on the exchange term, 
where just the Coulomb interaction is the leading one. This 
situation is trated in the Hubbard model [9,10]. 
 

 
 

Fig. 1. Density of states in the rigid band model: (a) 
assuming two different Fermi levels for the two sub-
bands; (b) assuming the same Fermi energy, which is 
actually the real physical case. The two situations are 
mathematically  equivalent,  but the formalism developed  
        based on model (a) is easiest for computations. 

 
  

2. The Hubbard model 
 
In the original work of Stoner [1] the interaction term, 

proportional to the square of magnetization of the system, 

is introduced phenomenologically. Wohlfarth [6] took a 
step further by considering  the many-electron Heitler-
London model and connecting the interaction to the one- 
and two-electron hopping integrals. The microscopic 
origin of the quadratic term was demonstrated two decades 
after Stoner’s work in the Hubbard model we discuss 
briefly in the following. 

The Hubbard model describes the hopping process 
between sites in the presence of a Coulomb repulsion [9-
11]. 
 
 

      (7) 

 
 indicates that the sum is performed over the nearest 

neighbours (in 1D, it means that   
                      

   ). 

 
As usual  and  are creation, respectively 

anihilation operators of electrons on site  with spin , and 
 are electron density operators.  

If the states are localized on centers, such as   
 

,  (8) 
 
then the average value of the repulsion term on the 
vacuum state  becomes [12]: 
 

                   (9) 

 
with  being the total electron numbers,  the 
corresponding electron densities, and  the crystal 
volume. 
Further, 

        (10) 

 
The term  does not depend of spin polarization, 

and it will be involved in the kinetic term (it may 
correspond to introduction of a chemical potential). The 
term   corresponds to the decrease of 
total  energy due to spin polarization, thus to a 
ferromagnetic ordering. 
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3. The total interacting energy of the system 
 
For the whole crystal, the interaction implies an 

energy decrease: 
 

   (11) 

 
Also for the whole crystal, the kinetic energy will be 

given by 
 

    (12) 

 
We have multiplied by , because otherwise the 

energy is related to its amount for a single electron. 
Without spin polarization, , 

resulting that: 

              (13) 

The variation of the kinetic energy will thus be written as 

 

(14) 
Then, we compute the variation of total energy in presence 
of ferromagnetic polarization: 
 

       (15) 

 
We will further use the density of energy per electron and 
per unit volume,  which is definited as 
 

   (16) 

 
Extracting  from eq. (6) and including it in eq. (16), also 
keeping in mind that , results in: 

(17) 

where  

            (18) 

 
4. The Stoner instability 
 
Being given a polarization  and once known the 

density of states , the Fermi levels  şi , and the 
value of the splitting,  may be univoquely defined 
via eqs. (4), (5), and (6).  
Thus one may compute the dependence of the energy on 
the polarization , via eq. (17). The extremum condition 
for the energy yields the equilibrium value of the 
polarization  
 

 

  (19) 
Deriving also the relations (5), one obtains: 

 

      (20) 

 
valid for any value of , i.e. also for . 
Replacing (20) for  in eq. (19), we obtain: 

 

    

(21) 
 

Thus, one obtains a general equation: 
 

       (22)  
 

This is an interesting result: the value of the band 
splitting (experimentaly accessible) is gived by the product 
between the Coulomb repulsion parameter and the fraction 
of band polarization (experimentaly accessible, as well). 
We shall use this formula especially for , the case 
of  being trivial (see below). 

It is obvious that using eq. (22), an energy extremum 
is realized also for . The next step is to see in what 
conditions the state with  (which corresponds to 
paramagnetism, the absence of polarization) is unstable. 
This is the Stoner instability of the paramagnetic state, 



Band ferromagnetism in systems of variable dimensionality                                                    3061 
 

which requires that the second derivative of energy with 
respect to  to be negative: 

    (23) 

 
By using eqs. (20), 
 

            (24) 

 
Finally, we evaluate this second derivative in : 

 

        (25) 

 
where we replaced . 
It results that paramagnetic state cannot be realized (the 
energy is not stable in ) unless , 
corresponding to 
 

                      (26) 

 
Contrary (the interesting case for ferromagnetism), if  

 
,                          (27) 

 
the paramagnetic state is unstable. A ferromagnetic state 
with  will become the stable state of the system. Eq. 
(27) is called the Stoner criterion (1938). 
If the DOS is normalized per electron, i.e.  

, the Stoner criterion may be written as 
[4,11]:  

    (28) 
 
 

5. Intuitive way of deduction of the Stoner  
    criterion 
  
This way is the usual one presented in textbooks 

[11,13] and we will briefly mention it for historical 
reasons. (Note also that we identified a few errors in the 
derivation presented in [13].) From Fig. 1 it results that a 
number of  eletrons inside unit volume pass from sub-
band  into sub-band . Their average kinetic energy 
varies as follows: 
 

         (29) 

 
It corresponds to a variation of kinetic energy (in unit 
volume per electron) of 
 

          (30) 

At polarization , the variation of the total energy of the 
system (in unit volume) will be 
  

    (31) 

 
We use eq. (6), approximated as: 

 

(32) 
 

Replacing in eq. (31), one obtains the variation of energy 
per unit volume at realization of ferromagnetic ordering: 
 

    (33) 

 
Thus, the condition that the ferromagnetic state must 

be more stable than the paramagnetic state ( ) 
results in the  Stoner criterion [eqs. (27)-(28)]. 

 Although the intuitive deduction of Stoner criterion  
presented in this section is simpler, the derivation of the 
Stoner instability from Sec. 5 is much more general and 
does not contain approximations except the assumption of 
rigid displacement of energy bands [formula (1)]. It also 
allows the computation of the energy dependence  
and of the equilibrium polarization of the electron gas, 
whenever the ferromagnetic state is the most stable one. 

 
 

6. Determinations of magnetic polarizations   
    for several dependencies of the density of  
    states  
 
6.1. General considerations 

 
An important observation is that in eq. (33) (the 

intuitive deduction of Stoner criterion) a series of 
approximations have been made in order to obtain the 
simple quadratic dependence of energy between the 
ferromagnetic state and the paramagnetic one: . 

   paramagnetic stability 
   paramagnetic instabity (Stoner criterion) 

The two situations are depicted in Fig. 2 by curves (1) and 
(2) respectively. Meanwhile, we may guess that the real 
situation could be reprezented by a curve (3) in Fig. 2, 
where  has an (unstable) maximum in  and a 
minimum for a value . The aim of the present 
section is to determine the value of band polarization, once 
the density of states  is known. This will be possible 
by performing the next two steps: 
i) Determination of the  şi  dependences 
starting from eqs. (5). 
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Fig. 2. Energy variation as function on the asymmetry 
parameter . Case (1): stable paramagnetic state; case 
(2): unstable paramagnetic state; case (3) situation 
where the minimum energy is obtained for a given value  
                                      of asymmetry . 

 
 
ii) Estimation of energy dependence on polarization and 
expressing the possibility of ferromagnetic ordering 
realization; finding the equilibrum value : 

   (34a) 

 

  ;               (34b)  

 

                (34c) 

 
6.2 The two-dimensional (2D) case. The case of  
      constant density of states 
 
This is the simplest case because 

 (see Fig. 3). 
 It may be easily seen that  

 
  (35) 

 
The Stoner criterion thus becomes  
 

                  (36) 
 

The Fermi levels shift themselves obeing Eqs. (5). 
After introduction of the DOS (35), we obtain 
 

;           (37) 
 
The splitting is  and it does not depend on . The 
energy has the parabolic dependence: 

 

                   (38) 

 
 

Fig. 3. Spin-resolved density of states for the ideal 2D case. 
 
 

In the case of satisfaction of Stoner criterion, 
,  is a concave parabola (curve (2) in Fig. 

2). There is no second minimum. The system develop by 
itself to the maximum admitted value of  which is  
and it corresponds to the 100% polarization. In fact, the 
system envolves towards the maximum magnetic moment 
per atom allowed by Hund’s rules. It is known that, for 
example, in the case of Fe surfaces, the atomic magnetic 
moment increases to 2.8-2.9  [14], which is near of 
maximum admitted value of 3  for the 4s13d7 
configuration of Fe. Also, even when deposited on a 
semiconductor and taking into account the presence of 
magnetically dead or of low magnetic moments at the 
interface [15], the Fe magnetic momentum of the thin Fe 
layers (2.7-2.8 ; see [16])  exceeds largely the bulk 
value (2.2 ). In fact, the realization of pure 2D 
magnetic system is rather difficult in practice. Other 
experimental cases illustrating at least qualitatively these 
findings are the induction of a net ferromagnetic ordering 
of manganese in Mn layers deposited on InAs(100), where 
Mn magnetic moments of 0.7  [17,18] have been 
reported, although the Mn ion itself is not in a very high 
spin state (only 2.4 ; see [18]) and despite the strong 
interdifussion observed of the Mn into the semiconductor. 
An even higher Mn magnetic moment (1.6 )  was 
reported in pure 2D Mn layers c(2×2) reconstructed on 
Cu(001) [19]. On contrary, in the case of semi-Heusler 
alloy trilayers NiMnSb/MgO/NiMnSb, a Mn 
ferromagnetic ordering with a magnetic moment as high as 
3.9  (very close to the theoretical value of 4 Bohr 
magnetons, for the manganese 4s13d6 configuration) was 
recently reported [20]. All these experimental findings 
may be summarized as in the following sentence: 
whenever intermixing, contamination or other interface 
effects may be minimized [21], a 2D system evolves alone 
towards the maximum polarization allowed by the Hund's 
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rules. We add here that this is a just a consequence of the 
specific shape of the DOS (almost constant) for a 2D 
system. 
 In the case of Fe thin films, the value of the 
polarization may be calculated as follows: in paramagnetic 
state,  and each sub-band is occupied 
with . In the case of the configuration 
 

↑ ↓ ↑ ↓ ↑ ↑ ↑ 
 

 and , then  
are transfered from sub-band  into sub-band . 
Aplication of eqs. (5) or (44) consists in calculation of  as 
follows: 
 

 

 
This is the maximum allowed polarization. There are no 
more electrons to can pass from sub-band  into sub-band 

 because there are no more free states. 
 In the case of solid iron (3d) the atomic magnetic 
moment is sensible considerably lower, being 2.2 

/atom. It means that 
 

, 
 
thus  and , 
which means . We anticipate a 
result for the case 3D, namely, at a given moment the 3D 
dimensionality conditions will produce an energy curve of 
type (3) in Fig. 2, with a energy defined minimum for a 
value . 
 

6.3 Density of states in the free electron  
      aproximation for systems of variable  
      dimensionality 
 
The DOS is written as power function: 

 
                              (39) 

 

with                                                 (40) 

 
Generally,      ,                                            (41) 

with  being the dimensionality of the system. 
We have to keep in mind that  reffers to the sub-band 
DOS, and  reffers to the total electron density, that is, in 
the case of paramagnetism, 
 

 .                          (42) 

 
The value of the constant  may be easily deduced from 
eq.  (42), being: 
 

               (43) 

  
The position of Fermi energies in the two sub-bands  and 

 are derived from eqs. (5): 
 

     (44a)  
 

     (44b) 
 
The energy [eq. (34a)] becomes: 
 

         

     (45) 
The Stoner criterion [eq. (34c)] easily results: 
 

     or                     (46) 

 
Particular cases: 
a) One-dimensional systems, , 
 

                    (47a)  
 

                    (47b) 
 

                         (47c)  
 

               (47d) 

result which confirms what we announced in the previous 
section. The Stoner criterion, , result in a shape 
of  as a concave parabola, i.e. curve (2) in Fig. 2. 
 
b) Two-dimensional systems, . We obtain the same 
results as in the previous section: 
  

                     (48a) 
  

                     (48b) 
  

                         (48c)  
  

              (48d) 
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The Stoner criterion:         
 

                                (48e) 
 
As a consequence, both in the 1D and 2D cases, whenever 
the Stoner criterion is satisfied, the most stable state is that 
with the maximum allowed polarization  or 

, allowed by Hund’s rules. 
 
c)  Three-dimensional systems, . The situation is to 
a certain extent more complicated and we will bring up 
numerical estimations (by using nowadays computing 
possibilities, which were not available when Stoner 
published his first work in 1938 [1] - this is a reason for 
which most part of this work is dedicated to the treatment 
of several approximations, series developments, etc.): 
 

                  (49a) 
 

                 (49b) 
 
The energy is given by: 
 

 

  (50) 
The Stoner criterion results as 
 

                             (51) 

 
In the 3D case, for certain values of the fraction  
(between  and , result reported also by Stoner [1]) 
local minima of energy are obtained in the range 

. The  curves as eq. (50) are plotted in 
Fig. 4. It may be observed that the equilibrium assymetry 
value  strongly varies as function of parameter 

. 
 

 
Fig. 4. Energy dependence on the asymmetry parameter, 

for the 3D case. 
 

Fig. 5 represents the numerical solutions of the 
transcendent equation for the energy minimum condition: 
 

 
(52) 

 
 

Fig. 5. Variation of the equilibrium asymmetry parameter 
, as function on the ratio between the Hubbard term  

                          and the Fermi energy . 
 
 

The numerical solutions are well approximated by the 
following empirical formula: 
  

    (53) 

 
which is also represented in Fig. 5. In the following we 
will apply these computations to the case of ferromagnetic 
Fe and Ni. 

Finally, Fig. 6 represents the energy variation of the 
minimum corresponding to the ferromagnetic ordering: 

. It is obvious that for  a 100% 
(or a maximum admitted) polarization is obtained using 
the previous considerations. 

Back to the case of three-dimensional bcc iron, we 
have previous infered a 31.43% polarization. By analizing 
the numerical solutions (Fig. 5) we obtain 

. Now, from band structure calculations, 
 [5,22]. This results in a value of the Hubbard 

parameter of about 8 eV. Recently, in Ref. [22] a value of 
the Hubbard energy of 2.0 eV was theoretically computed 
by local spin density approximation (LSDA) calculations.  

But, in the definition of the Hubbard energy of the 
above reference a further  factor appears before the 
sum. On the other hand, in eq. (3) from [22] the sum was 
not performed over all nearest neighbours. To translate the 
Hubbard energy from Ref. [22] to the value derived in this 
work one has first to divide by 2, then to multiply by the 
number of nearest neighbors, which is 8 for bcc Fe. 
aaaaaaa 
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Fig. 6. Energy gain of the ferromagnetic state, as 

function on the ratio between the Hubbard term and 
                           the Fermi energy . 

 
 
This yields 8.0 eV, in agreement with the simple 
derivation of states (which is roughly the same, whatever 
computation method). Hence, the present theory offers a 
hint for the derivation of a parameter of fundamental 
importance (the Hubbard energy) from the magnetic 
properties in the band magnetism model. 

 For the fcc Ni case, the "ideal" configuration is 
4s13d9, with d orbital occupancy represented below: 
 

↑ ↓ ↑ ↓ ↑↓ ↑↓ ↑ 
 

Here the average occupancy number per sub-band is 
4.5 and the maximum number of transfered electrons is 1. 
The maximum allowed polarization yields as 

. In fact, both for the case of 3D and 
2D Ni layers, the experimental value obtained at very low 
temperatures is 0.6  [23]. This means, in fact, that only 
0.3 electrons are transfered from the  into sub-band . 
The effective polarization in this case is . 
In this case, the value of the ratio  is fairly close to 
its lower limit of 4/3 for the occurence of ferromagnetism 
(Fig. 5). Now, taking into account band structure 
calculations [22],  eV and that means that the 
Hubbard parameter is about 13.3 eV for fcc Ni. In Ref. 
[22] this energy (multiplied by two, but divided to the 
number of nearest neighbors, which are 12 for fcc 
structures) was reported from LSDA calculation as being 
3.0 eV, whereas, according to our evaluations, it should be 

 eV. The agreement is again good 
enough, but not as fair as in case of bcc Fe. The reason for 
this disagreement could also be connected to the strong 
configuration interaction reported for nickel [24]. 

 
6.4. Parabolic density of states, half-filled at  
       equilibrium 
 
We treated this subject owing also to the following 

arguments: (i) 3d bands are often represented as parabolic-
like DOSs [11]; (ii) also, often in the case of systems of 
reduced dimensionality, there is a considerable depletion 

of the DOS by electron transfer to the substrate [15-18,21]; 
(iii) the presence of surface defects, impurities, terraces, 
nanoparticles, colloids, often results in the narrowing of 
the 3d bands [25];     (iv) especially in the case of Ni, it 
was recognized from several decades ago that a symmetric 
narrow function could be very well simulate its DOS [26]; 
(v) recently, we computed density of states obtained  from 
the dispersion laws  computed in the tight-binding 
approximation. As an example, for a simple cubic lattice, 

, etc. [27].  
The result  may be approximated in some cases with a 
parabola. This work is still in progress and will be detailed 
in a future paper.  

In this paragraph we shall treat only the case of half-
filled parabolic DOS, since this may be useful for practical 
cases, when maximum polarization is aimed from a finite 
size (or nanostructured) system. The case of arbitrary band 
filling will be detailed also in a future communication. 

The density of states is described, in this case, by: 
 

                         (54) 
 
and lies in the energy range  , where: 

 

                 (55) 

 
See figure 7. The parameters  and  may be written 

as functions of the half width  and of the (total) electron 
density : 

                (56) 

 
This means that 

;                             (57) 

 

 
 

Fig. 7. The parabolic density of states, half-filled for zero 
polarization. 
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The Stoner criterion (27) would be in this case written by 
linking the Hubbard interaction with the sub-band width: 
 

                                 (58) 

 
 The following substitution will be further 
employed: 
 

              (59) 

 
The first equality results from obvious considerations 

of symmetry. Further, we deduce the variation of the shift 
of sub-bands Fermi levels as function of polarization 
degree  starting from eqs. (5): 

 (60) 
This is an algebraic cubic equation: 
 

                             (61) 
 

with the only acceptable solution 

                (62) 

 
This function is plotted in Fig. 8. 
 

 
Fig. 8. Solutions (62) of equation (61). 

 
Further, the energy may be easily estimated: 

 

 

(63) 

The energy dependence as function of asymmetry 
parameter  is plotted in Fig. 9 for various values of the 
fraction . The result obtained in this case is 
qualitatively the same as for 3D free electron DOS, but in 
this case the Hubbard energy  has to be compared with 
the band half-width , whereas the absolute value of the 
Fermi energy does not occur in any equation. Further, by 
making the substitution , the energy may be 
written as: 
 

    (64) 

 
This allows the analytical computation of the minimum of 
the energy curves: 
 

    (65) 

 This also represents an alternative proof of the 
Stoner criterion, since there is no real value of  
minimizing the function (70) if the Stoner criterion is not 
fulfilled, i.e. . 

  

 
 

Fig. 9. Energy difference between the ferromagnetic and 
the paramagnetic state, as function on the asymmetry , 
for several values of the parameter  (ratio 
between Hubbard energy and DOS half-width). The 
dotted curves on the large graph represent cases where 
the Stoner criterion is not satisfied. The insert represents 
energy curves in the region of  yielding ferromagnetism  
                       with incomplete polarization. 
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Thus, the relevant cases are: (i) , the Stoner 
criterion is not satisfied and the paramagnetic state is the 
most stable one; (ii) , a minimum occurs 
with incomplete polarization given by eq. (65); (iii) for 

, the system evolves towards maximum polarization 
, or the maximum allowed by other considerents, 

e.g. Hund's rules. We note here that the particular case 
considered of half-filled parabolic DOS does not imply 
automatically e.g. that the 3d bands are half-filled (i.e. a 
3d5 configuration). The real DOS corresponding to all 
electronic states in the band may have low- (occupied) or 
high-energy (unoccupied) tails and behave as eq. (54) only 
locally, but for our model this is sufficient. It is clear that a 
generalization is needed, in the sense that one has to 
consider the band (54), represented in Fig. 7, but not 
necessarily half-filled. We intend to address this problem 
in a future work. 

 However, it is tempting to discuss the model 
presented in this Section at least to the case of Fe, where 
the computed DOS has some similarities with the half-
filled parabolic DOS in absence of polarization [5,16,28]. 
Note also that in Ref. [28] tight-binding computations 
resulted in a similar model even for constant DOS. We 
noted in Sec. 6.3. that the Fe polarization is , which 
in accordance with eq. (65) implies a value of . 
With a Hubbard energy of 8 eV (in our notation), this will 
imply that the band would have a half-width of 5.9  6 
eV, which is close to the theoretical computations [5]. 
(Remember that this was the starting value in order to 
derive the Hubbard energy in the 3D free electron DOS 
model.) We note here that it seems to be a striking 
equivalence between the parabolic DOS  
and the 3D free electron DOS , with some 
equivalence between the band half width  with the Fermi 
energy of the second case. Moreover, similar 
equivalencies were reported in Ref. [28] even for the 
constant DOS which corresponds to the free electron 2D 
DOS. We suggest that more pure theoretical effort is 
needed to prove these equivalencies. 

 
 
8. Conclusions 
 
The Stoner model of band ferromagnetism at zero 

temperature is reviewed from the point of view of the 
Stoner instability of the paramagnetic state. Detailed 
calculations are presented for 1D, 2D and 3D systems, 
correlated with the available experimental data and 
making use of nowadays computing machines (necessary 
especially in the case of 3D systems). We obtain that for 
1D and 2D systems, provided the Stoner criterion is 
satisfied, maximum polarization of the electrons occurs. 
Experimental available data support these assumptions. 
For the case of 3d electrons, we recover the original Stoner 
results, but in addition we exploit the numeric results in 
order to derive useful parameters, such as the Hubbard 
interaction energy. Examples are given related to detailed 
density of state calculations or to experimental results, 
mainly on metallic iron and nickel. Another special case 

treated in this paper is that of narrow, half-filled density of 
states, which may be approximated as parabolas near the 
Fermi level. It is shown that such systems behave in a very 
similar way with systems approximated by the three-
dimensional free electron density of states. Further work 
will be devoted to (i) the non-zero temperature problem; 
(ii) to the case of a non-half-filled parabolic density of 
states; (iii) to adaptation of elements of Hirsch 
ferromagnetism in case of narrow density of states; (iv) to 
the application of Stoner theory to cases of DOS 
determined numerically by tight-binding theory. 
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